i++; i = 4 j = --k; k = 4 so j = 4 i = 4 j = 4 k = 4
++j; j = 3 k = i++ + --j; j = 2, k = 3 + 2 = 5, i = 4 i = 4 j = 2 k = 5
j = ++i * i++; i = 4, j = 4 * 4 = 16, i = 5 i = 5 j = 16 k = 5
k = i++ / j--; k = 3 / 2 = 1, i = 4, j = 1 i = 4 j = 1 k = 1
i = ++k * j--;k = 6, i = 6 * 2 = 12, j = 1 i = 12 j = 1 k = 6
k = (2 + i++) / (3 + ++j);j = 3, k = (2 + 3)/(3 + 3) = 5 / 6 = 0, i = 4 i = 4 j = 3 k = 0
i = ++j + j; j = 4, i = 4 + 4 = 8 i = 8 j = 4
i = j + j++; i = 3 + 3 = 6, j = 4 i = 6 j = 4
i = ++j * 2 + ++j * 3; j = 4 then 5, i = 4 * 2 + 5 * 3 = 8 + 15 = 23 i = 23 j = 5
i = ++j * 3 + ++j * 2; j = 4 then 5, i = 4 * 3 + 5 * 2 = 12 + 10 = 22 i = 22 j = 5
j = 3 * j-- + 2 * j--; first use j's current value (3) and then subtract 1 so now it is 2 use that for the second j in the equation so j = 3 * 3 + 2 * 2, j becomes 2 and then 1 temporarily but from the calculation j = 9 + 4 = 13 i = 0 j = 13
j = 2 * j-- + 3 * --j; j = 2 * 3 + 3 * 1, j temporarily becomes 1 but from the calculation j = 6 + 3 = 9 i = 0 j = 9
y = ++x - z++;
z = ++x * y - 1;
m = n - p; n++; p--:
++n; p = n - m; m--;
j = 0; k = 0; j = --j; j becomes -1 temporarily because pre-increment and then that -1 is stored so j = -1 k = k++; we will store the current value of k (0) eventually in k but first we have to temporarily add 1 to it because of the post-increment so it becomes 1 before we store the 0 to replace that value. j = -1 k = 0