
6.4_2020.notebook

1

May 07, 2020

6.4 Functions
Functions and procedures are very similar. They are both types of subprograms. They can
both have parameters or not. They can both have local variables or not. The difference is that
a function produces a single answer. The result of that function needs to be used in some way
by the program. This means that a function is called in a different way than a procedure.

Consider the built in Turing function strint. It takes a string as a parameter and turns it into a
int. We have to do something with that int. So we don't called strint like a procedure:

var s : string := "1234"

strint(s) <--- This would cause an error.

We have to do one of three things:

var i : int

i := strint(s) <--- (1) store the result of the function in a variable

put strint(s) <--- (2) print the result of the function

if strint(s) > 1000 then <--- (3) compare the result of the function with something

Now let's consider making our own function. We will make a function that will find the mean of
3 numbers:

function mean (a, b, c : real) : real

result (a + b + c) / 3

end mean

Notice some differences with procedures. In the first line of the definition we use the word
function instead of procedure. After we list the parameters we have to say what type of
result this function is going to produce. We do this as if we are declaring a variable.
Somewhere before the function is over we need a result statement to produce the result of
the function that we will return to where we called the function. Here are some examples of
how we could call the function:

put mean(1, 2, 3) ---> prints 2

var x: real := 2.2

var y: real := -3.153

var answer : real

answer := mean(x, y, x + 5.7)

put answer ---> prints 2.315667 (2.2 - 3.152 + 7.7) / 3

if mean(10, x, 35.1) > 10 then

put "Whatever"

end if

mean(3.8, 6.2, 9.1) X mean is not a procedure, so you need to do something with
the result

6.4_2020.notebook

2

May 07, 2020

If we wanted to find the mean of any number of numbers, we would need to use an array as a
parameter. Then we could rewrite the mean function like this:

function mean (a: array 1 .. * of int) : real

var sum : int := 0

for i : 1 .. upper(a)

sum := sum + a(i)

end for

result sum / upper(a)

end mean

Suppose we wanted to find the largest of 3 numbers. There are two main approaches. One is
to use a local variable and one result statement. It has the advantage of exiting the function
at the end of the function:

function largest (a, b, c : int) : int

var big : int

if a > b and a > c then

big := a

elsif b > c then

big := b

else

big := c

end if

result big

end largest

Once we know what the answer is we could return the result right away if we want to. It is
possible to have multiple result statements. The drawback is that the function is a bit harder
to understand when it has multiple possible exits. We could do it like this with no local variable
needed and 3 result statements:

function largest (a, b, c : int) : int

if a > b and a > c then

result a

elsif b > c then

result b

else

result c

end if

end largest

As soon as a function hits a result statement it returns to where you called it from and the
rest of the function is not executed.

Read section 6.4 in the textbook. Do exercise 6.4 #1-8 (I'll post solutions on Thursday).

Keep checking the web site for the summative, it will be posted soon..

