
6.3_2020.notebook

1

May 04, 2020

6.3 Value Parameters
Value parameters allow you to send information to a procedure. Consider the drawline
procedure we saw at the beginning of the year. We can use it to draw a line anywhere we
want in any colour we want. The procedure is not psychic. We need to tell it where to draw
the line. We do that using value parameters. The drawline procedure has 5 parameters.

We can call it like this:

drawline(10, 20, 30, 40, blue)

or we could do this:

var num : int := 50

drawline(num, maxx, num + 50, 200, red)

In each case there needs to be 5 arguments to match up with the 5 value parameters in the
procedure definition of drawline (which is part of Turing). The arguments are separated by
commas.

Let's define our own procedure that uses value parameters. Turing has a procedure called
drawoval that we can use to draw circles. It takes 5 arguments like drawline. You have to
give both a horizontal radius and a vertical one. This is a bit redundant when you want a
circle, since they'll both be the same. So let's make a procedure called drawcircle that will
only need four arguments (x and y of the centre, the radius and the colour). We make
parameters by declaring variables inside of brackets after the name of the procedure (but don't
use the word var).

procedure drawcircle (x : int, y : int, r : int, col : int)

drawoval(x, y, r, r, col)

end drawcircle

To draw a circle with a centre at (50, 70) with a radius of 20 in green we would say:

drawcircle(50, 70, 20, green)

We call it just like the predefined Turing procedures we've used all year. In this example all the
arguments are constants. They can also be variables or calculations, too, as long as they give
the right type (in this case they are all int). So we could do:

var x1 : int := 150

var y1 : int := 75

drawcircle(x1, y1, 60, yellow)

The following would be illegal because all the arguments are the wrong type, or the wrong
number of arguments:

drawcircle (3.5, 7.4, 1.3, "red)

drawcircle (10, 20, 30, 30, green)

drawcircle

6.3_2020.notebook

2

May 04, 2020

Parameters are like local variables since they can only be used inside a procedure. Before the
procedure start however, they get initialized with the values of the corresponding arguments in
the procedure call. When declaring parameters we can combine ones that have the same type
just like regular variable declarations. Our drawcircle could also be defined like this:

procedure drawcircle(x, y, r, col : int)

drawoval(x, y, r, r, col)

end drawcircle

var x1 : int := 50

drawcircle (30, 40, 50, red)

drawcircle (x1, x1 + 20, 2 * x1, blue)

Let's trace the above program:

Another thing to keep in mind with value parameters is that you are not allowed to change them
inside the procedures. So once they are given values when you call the procedures they then
act like constants.

Consider the following procedure:

procedure example(a : int, b : real, c: string)

a := 55

.

.

.

end example

Which of the following calls would be illegal, and why?

example(9, 2.5)

example(3, 5.5, "string")

example(5.5, 3, "word")

example(2, 5, "more")

var x : int := 25

example(x, 3.1, "whatever")

example(x + 5, x / 9, "one")

6.3_2020.notebook

3

May 04, 2020

You can also pass arrays as parameters. Suppose we wanted to print the mean of 10 numbers
stored in an array. We could write a procedure like this:

procedure printMean(values : array 1 .. 10 of int)

var sum : int := 0

for i : 1 .. 10

sum := sum + values(i)

end for

put "The mean is ", sum / 10

end printMean

The only problem is if we have a different size array (say with 500 elements) we would have to
write another procedure and chance all the 10's to 500's. If we have a third size we'd need to
write a third procedure. Fortunately we can make the procedure handle any size array. Here's
how (the changes are in red):

procedure printMean(values : array 1 .. * of int)

var sum : int := 0

for i : 1 .. upper(values)

sum := sum + values(i)

end for

put "The mean is ", sum / upper(values)

end printMean

The asterisk can be used to represent any size array. In the procedure we can use the upper
function with the name of the array in brackets (the argument) to find out what the actual size of
the array is.

Read section 6.3 in the textbook. Do exercise 6.3 #1-7 (I'll post solutions on Friday).

We will do 6.4 this coming Monday.

