ALCOHOL, PHENOLS, AND ETHERS

ALCOHOLS

- Alcohols contain the hydroxyl unit as their functional group (-OH)).
- The general formula is R-OH, where R = an alkyl group e.g.

___ C ___ OH ==> Methonol

Physical Properties

- The hydroxyl group is polar and allows for hydrogen bonding.
- Due to the increased intermolecular forces, the melting and boiling points of alcohols are higher than the corresponding hydrocarbon. MP & BP increases with chain length.
- Since the hydroxyl group allows for hydrogen bonding, alcohols are quite soluble in water.
- As the hydrocarbon chain increases in length, the solubility in water decreases. Why?
- C_1 C_5 = highly soluble; C_5 C_7 = moderately soluble; C_8 and above = slightly soluble/insoluble

Naming Alcohols

- Remove the -e from the hydrocarbon name, replace with "ol"
- follow regular rules for naming

Examples:

```
CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH ==>?
CH<sub>3</sub>CH(OH)CH<sub>2</sub>CH<sub>2</sub>CH(CH<sub>3</sub>)CH<sub>3</sub> ==>?
CH<sub>3</sub>CH<sub>2</sub>CH(OH)CH<sub>2</sub>CH(CH<sub>3</sub>)C1 ==>?
```

Common Names of Alcohols

1. Name the alkyl group to which the OH is attached, then add "alcohol" to the end

Examples:

IUPAC NAME	COMMON NAME

methanol methyl alcohol

ethanol ethyl alcohol

2-propanol isopropyl alcohol

Classfication of Alcohols

1) **Primary alcohol** - one in which the carbon to which the OH group is attached is attached to only ONE other C atom.

E.g.

2) **Secondary alcohol** - one in which the carbon to which the OH group is attached is attached to only TWO other C atoms.

E.g.

3) **Tertiary alcohol** - one in which the carbon to which the OH group is attached is attached to only THREE other C atoms. E.g.

"Special Alcohols"

- Alcohols which have 2 OH groups are called DIOLS or GLYCOL
 CH₂OHCH₂OH = 1,2-ethanediol or ethylene glycol
- Alcohols which have 3 OH goups are called triolsCH2OHCHOHCH2OH = 1,2, 3-propanetriol or glycerol or glycerin

PHENOLS

• An "alcohol-like" compound that have an hydroxyl group attached to a benzene ring

 phenols are important industrial chemicals which are used as antiseptics, plastics, cosmetics

ETHERS

- Ethers are compounds where both sides of the oxygen is bound to an akyl group
- General formula: R O R

Properties of ethers:

- much less polar than alcohols
- not soluble in water
- Lower MP and BP than alcohols
- chemically inert
- are all very flammable

Naming Ethers IUPAC system

- Identify the longest chain and use it as the base name--one exception is if the shorter chain has a name altering functional group
- Name the shortest carbon chain with the "oxy" ending & treat it as a substituent
- Number location of ether bond on parent chain so that it is as low as possible
- Use other IUPAC rules for naming subsituents

Naming Ethers

• CH₃CH₂CH₂-O-CH₃

1-methoxypropane

• CH₃CHCl-O-CH₃ 1-chloro-1-methoxyethane

• -CH₃CH₂-C₁HCH₃ O-CH₂CH₂CH₃

2-propoxybutane

Common Name of Ethers

- Treat each carbon chain as a branch off the oxygen
- list each side with they "yl" ending
- Add ether to the end
- CH₃-O- CH₃ dimethyl ether
- CH_3 O- CH_2CH_3 methyl ethyl ether
- CH₃ CH₂-O-CH₂Cl chloromethyl ethyl ether

Homework

• Page 48 # 1 - 7