SCH 3U FINAL EXAM: PRACTICE

PART A: Multiple Choice:

Identify the letter of the choice that best completes the statement or answers the question.

1	The substance $HBr_{(aq)}$ is called		
1.	a. aqueous bromine	b	hydrobromic acid
	b. aqueous hydrogen bromine		bromic acid
	c. hypobromic acid	0.	
2.	The mass found in 0.10 mol of KHC ₄ H ₄ O ₆	is	
	a. 4.6 g	d.	37.6 g
	b. 19 g	e.	55.8 g
	c. 23.7 g		
3.	The limiting reagent of a chemical reaction is		
	a. the reactant of a chemical process that is not consumed completelyb. the product of a chemical process that is consumed completely		
	b. the product of a chemical process that is consumed completelyc. the product of a chemical process that is not consumed completely		
	 d. the reactant of a chemical process that is consumed completely 		
	e. none of the above		
4.	Zinc and sulphur react to form zinc sulfide, as shown in the following chemical equation:		
	$Zn + S \rightarrow ZnS$		
			for this reaction, the limiting reagent will be
	a. Zinc		both zinc and sulphur
	b. Sulphur	e.	cannot be determined
	c. zinc sulfide		
5.	In an appariment 850 g of methans CH	was road	oted with 15.0 g of ovugon gas as shown in the following
5.	In an experiment, 8.50 g of methane, CH ₄ , was reacted with 15.9 g of oxygen gas as shown in the following equation: $CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)}$		
	Determine the percentage yield if 9.77 g of		dioxide was obtained in the lab
	a. 78.4%		87.1%
	b. 81.9%		89.4%
	c. 82.3%	0.	07.170
6.	Which of the following is not a solution?		
	a. oxygen in water	d.	sugar in water
	b. tin in copper (bronze)	e.	seawater
	c. sand in water		
7	The separation of ions that occur as ionic compounds dissolve in water is known as		
7.			
			dissolving deportation
		e.	deportation
	c. Protonation		
8.	The dissociation equation $K_3PO_{4(s)} \rightarrow 3K^+$	() + P	$2\Omega_{4}^{-3}$ represents
0.	a. soluble potassium phosphate	d d	soluble potassium phosphide
	b. insoluble sodium phosphate	е.	
	c. soluble potassium carbonate	0.	
	-		
9.	The most important step in the water treatm		
	a. Softening	d.	fluoridation
	b. Disinfection	e.	none of the above
	c. Aeration		
10	What volume of water should be added to 500 mL of a 1.0 mol/L CuSO ₄ solution to dilute it to 0.5 mol/L?		
10.	500 X		125 mL
	a. 500 mL b. 1.0 L		375 mL
	c. 250 mL	e.	
	C. 250 IIIL		
11.	A solution that contains the maximum quantity of a solute at a specific temperature is		
	a. Saturated	d.	
	b. Unsaturated	e.	none of the above
	c Supersaturated		

c. Supersaturated

- 12. Which of the following is the correct net ionic equation for aluminum metal placed into copper(II) chloride? a. $2Al_{(s)} + 3Cu^{2+}_{(aq)} \rightarrow 3Cu_{(s)} + 2Al^{3+}$
 - b. $Al_{(s)} + CuCl_{2(aq)}$

 - $\begin{array}{ll} c. & Al_{(s)} + Cu^{+}_{(aq)} \rightarrow Cu_{(s)} + Al^{3+}_{(aq)} \\ d. & 3Al_{(s)} + 2Cu^{2+}_{(aq)} \rightarrow 2Cu_{(s)} + 3Al^{3+} \end{array}$
 - e. none of the above

13. Screening, flotation, settling, and filtering out of solid particles in wastewater occurs during the

- a. secondary treatment
- d. quaternary treatment

b. tertiary treatment c. primary treatment e. all of the above

d. all of the above

e. They neutralize acids.

e. a and b only

- 14. Which of the following anions in solution would precipitate the silver ion, Ag^+ ?
 - a. SO_4^2
 - b. S^{2–}
 - c. Cl⁻
- 15. Which of the following compounds is insoluble in water?
 - a. $CaCl_2$
 - d. Li_2CO_3 b. Al(NO₃)₃ e. NH₄OH
 - c. $PbBr_2$
- 16. Which of the following is the correct dissociation reaction for calcium hydroxide?
 - a. $Ca(OH)_{2(s)} \rightarrow Ca^{2+}_{(aq)} + 2OH^{-}_{(aq)}$

 - b. $CaOH_{(s)} \rightarrow Ca^{+}_{(aq)} + OH^{-}_{(aq)}$ c. $Ca(OH)_{2(s)} \rightarrow 2Ca^{2+}_{(aq)} + OH^{-}_{(aq)}$
 - d. $Ca(OH)_{3(s)} \rightarrow Ca^{3+}_{(aq)} + 3OH^{-}_{(aq)}$
 - e. $Ca(OH)_{2(s)} \rightarrow 2 Ca^{2+}_{(aq)} + 2OH^{-}_{(aq)}$
- 17. Which of the following is <u>NOT</u> a property of bases? d. They turn red litmus blue.
 - a. They react with active metals.
 - b. They taste bitter and feel slippery.
 - c. They have a pH greater than 7.
- 18. Which statement about 0.1 mol/L acetic acid and 0.1 mol/L hydrochloric acid solutions is true?
 - a. HCl dissociates almost completely into ions.
 - b. $HC_2H_3O_2$ does not dissociate completely into ions.
 - c. There is no difference in pH.
 - d. both a and b
 - e. none of the above
- 19. A lab procedure involving the careful addition of an acid from a buret is called
 - a. titration
 - b. dilution
 - c. endpoint

20. The state of matter characterized by a definite volume and a shape based on the form of the container is a. gas

d. standard

e. distillation

- d. plasma e. glass
- b. liquid c. solid
- 21. The constant bombardment on the walls of a rigid container by gas molecules can be used to determine what characteristic of the gas? d. density

e. rate of diffusion

- a. pressure
- b. mass
- c. volume
- 22. Doubling the initial pressure while keeping the temperature constant causes the volume of a gas to go from 1000 mL to
 - a. 2000 mL (double) b. 500 mL (halved)

- d. about 900 mL (slight decrease)
- e. 1100 mL (increase slightly)
- c. 1000 mL (constant)

- 23. How many moles of KClO₃ are needed to form 2.8 L of O₂, measured at STP, according to the following reaction: $2KClO_3 \rightarrow 2KCl + 3O_2$ d. 0.25 mol
 - a. 0.083 mol
 - b. 0.17 mol
 - c. 0.33 mol
- 24. What volume of chlorine gas, measured at 0°C and 101.325 kPa, is required to react completely with 5.61 g of KOH in the following reaction: $Cl_{2(g)} + 2KOH \rightarrow KCl + KClO + H_{2(g)}$

e. 0.50 mol

- d. 4.48 L a. 0.56 L e. 22.4 L
- b. 1.12 L
- c. 2.24 L
- 25. The number of molecules in 1.00 L of O_2 gas at STP is
 - a. the same as the number of molecules in 1.00 L of H₂ gas at STP
 - 16 times the number of molecules in 1.00 L of H₂ at STP b.
 - $\frac{1}{16}$ times the number of molecules in 1.00 L of H₂ at STP c.
 - d. 6.02×10^{23}
 - e. variable due to the porosity of the container
- 26. Blackberries have a $[H^+_{(aq)}] = 4.0 \times 10^{-4} \text{ mol/L}$. What is their pH?
 - a. 3.4 d. 8.0 e. 5.0
 - b. 4.0
 - 2.0 c.

PART B: Short Answer

Answer all questions in the space provided.

- 1. For each pair, state one SIMILARITY and one DIFFERENCE. Use EXAMPLES to show how the terms in each pair are different. Proper sentences must be used.
 - a. Concentration and strength of an acid
 - b. Charles' Law and Boyle's Law

PART C: Problems

Answer all questions in the space provided. Show complete solutions for full marks. All answers must be expressed using correct significant digits.

- 1. What is the empirical formula of a compound whose percentage composition is found to be 2.20% hydrogen, 26.7% carbon, and 71.1% oxygen?
- 2. Sodium hydroxide and hydrogen sulphide combine to form sodium sulphide and water. Determine the mass of sodium sulphide produced when 9.19 g of hydrogen sulphide is combined with 16.1 g of sodium hydroxide.
- (5 marks) 3. For a chemical analysis, 750 mL of a 0.480 mol/L potassium permanganate solution, KMnO_{4(aq)} is to be prepared. Calculate the mass of potassium permanganate crystals that will be dissolved to make this solution.
- 4. Determine the volume occupied by 3.45 g of carbon dioxide gas at SATP.
- 5. Magnesium was added to hydrochloric acid, HCl, and produced 5.25 L of H₂ gas at a temperature of 325 K and a pressure of 100 kPa. What mass of Mg was used in this single displacement reaction?

(5 marks)

(3 marks)

(3 marks)

(15 marks)

(20 marks)

(4 marks)