# REACTIONS OF ALCOHOLS & ETHERS

- 1. Combustion (Extreme Oxidation) alcohol + oxygen  $\longrightarrow$  carbon dioxide + water 2 CH<sub>3</sub>CH<sub>2</sub>OH + 6 O<sub>2</sub>  $\longrightarrow$  4 CO<sub>2</sub> + 6 H<sub>2</sub>O
- 2. Elimination (Dehydration)

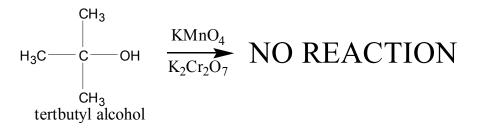
alcohol  $\xrightarrow{H_2SO_4/100 \,^{\circ}C}$  alkene + water CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH  $\xrightarrow{H_2SO_4/100 \,^{\circ}C}$  CH<sub>3</sub>CH=CH<sub>2</sub> + H<sub>2</sub>O

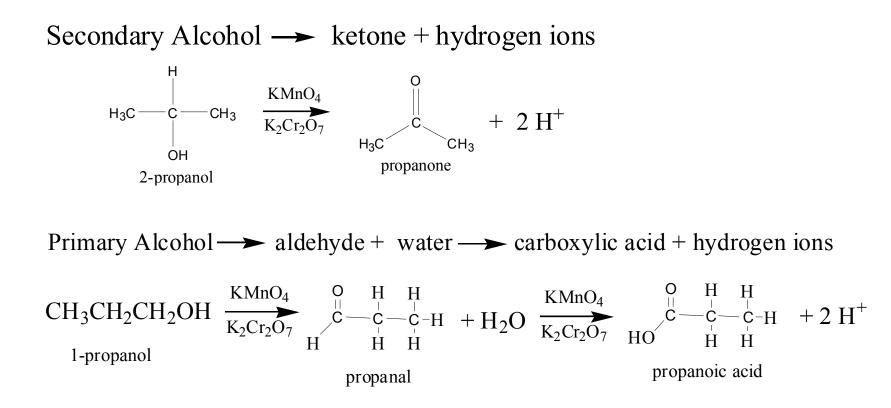
3. Condensation

excess alcohol  $\xrightarrow{H_2SO_4/140^{\circ}C}$  ether + water 2 CH<sub>3</sub>CH<sub>2</sub>OH  $\xrightarrow{H_2SO_4/140^{\circ}C}$  CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>3</sub> + H<sub>2</sub>O

### 4. Substitution

alcohol + hydrogen halide  $\xrightarrow{\text{Lucas Reagent}}$  alkyl halide + water CH<sub>3</sub>CH<sub>2</sub>OH + HCl  $\xrightarrow{\text{ZnCl}_2}$  CH<sub>3</sub>CH<sub>2</sub>Cl + H<sub>2</sub>O


- This reaction with the Lucas Reagent (ZnCl<sub>2</sub>) is a qualitative test for the different types of alcohols because the rate of the reaction differs greatly for a primary, secondary and tertiary alcohol.
- The difference in rates is due to the solubility of the resulting alkyl halides
- Tertiary Alcohol→ turns cloudy immediately (the alkyl halide is not soluble in water and precipitates out)
- Secondary Alcohol  $\rightarrow$  turns cloudy after 5 minutes
- Primary Alcohol → takes much longer than 5 minutes to turn cloudy


### 5. Oxidation

- Uses an oxidizing agent such as potassium permanganate ( $KMnO_4$ ) or potassium dichromate ( $K_2Cr_2O_7$ ).
- This reaction can also be used as a qualitative test for the different types of alcohols because there is a distinct colour change.

dichromate  $\rightarrow$  chromium <sup>3+</sup> (orange)  $\rightarrow$  (green) permanganate  $\rightarrow$  manganese (IV) oxide (purple)  $\rightarrow$  (brown)

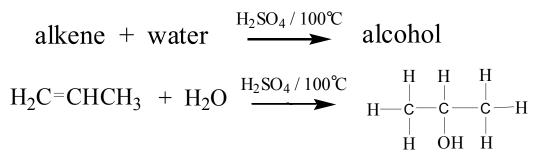
#### Tertiary Alcohol --- not oxidized under normal conditions



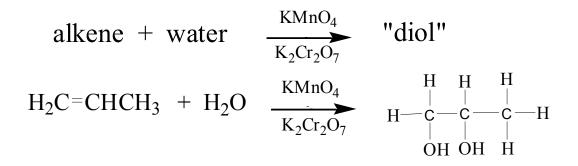


- 6. Acid-Base Reactions
- Like water, alcohols can act as an acid or base, depending on what it is reacting with.
- When they react as an acid, the alkyl oxide ion (R-CH<sub>2</sub>O<sup>-</sup>) is formed.

ethanol + sodium  $\longrightarrow$  ethoxide ion + sodium ion + hydrogen 2 CH<sub>3</sub>CH<sub>2</sub>OH + 2 Na  $\longrightarrow$  2 CH<sub>3</sub>CH<sub>2</sub>O<sup>-</sup> + 2 Na<sup>+</sup> + H<sub>2</sub>


• When they react as a base, the alkyl oxonium ion (R-CH<sub>2</sub>OH<sub>2</sub><sup>+</sup>) is formed

ethanol + sulfuric acid --- ethyloxonium ion + bisulfate ion


 $CH_3CH_2OH + H_2SO_4 \longrightarrow CH_3CH_2OH_2^+ + HSO_4^-$ 

## Preparation of Alcohols

1. Hydration of an Alkene



- 2. Oxidation of an Alkene
- This reaction uses an oxidizing agent like  $KMnO_4$  or  $K_2Cr_2O_7$  to produce a "diol".



## **Reactions of Ethers**

- 1. Ethers do not react with oxidizing or reducing agents.
- 2. Combustion

ether + oxygen  $\langle \text{ carbon dioxide + water}$ CH<sub>3</sub>-O-CH<sub>3</sub> + 3 O<sub>2</sub>  $\langle 2 \text{ CO}_2 + 3 \text{ H}_2 \text{O} \rangle$ 

- 3. Reaction with Concentrated Binary Acids ether + 2 binary acid  $\xrightarrow{\Delta}$  2 alkyl halides + water CH<sub>3</sub>OCH<sub>2</sub>CH<sub>3</sub> + 2 HCl  $\xrightarrow{\Delta}$  H<sub>3</sub>CCl + ClCH<sub>2</sub>CH<sub>3</sub> + H<sub>2</sub>O
- 4. Reaction with Atmospheric Oxygen
- This is a slow reaction in which highly unstable peroxides are formed

ether + oxygen  $\longrightarrow$  peroxide CH<sub>3</sub>OCH<sub>2</sub>CH<sub>3</sub> + O<sub>2</sub> $\longrightarrow$  H<sub>3</sub>COOCH<sub>2</sub>CH<sub>3</sub>

# HOMEWORK

- Pg 44 # 7-9
- Pg 48 # 12, 13 of Practice
- Pg 48 # 2-4, 6 of Section

